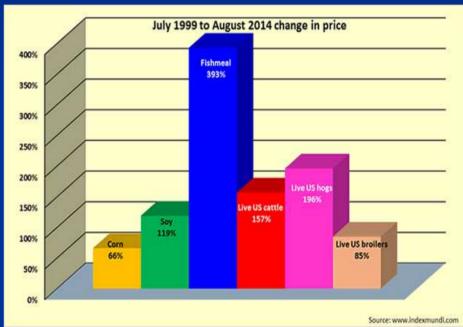

REDUCING DEPENDENCE ON FISHMEAL IN AQUACULTURE

REDUCING DEPENDENCE ON FISHMEAL IN AQUACULTURE

Thank you, World Ocean Forum for the invitation to participate

and thanks to my excellent colleagues Remedios Bolivar and Mokarrom Hossain

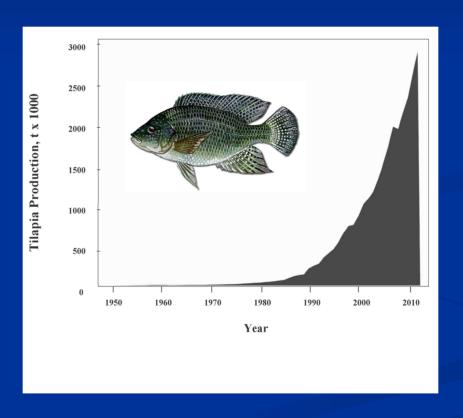


source: OECD, "Green Growth in Fisheries and Aquaculture Production and Trade" seen on www.knowtheflow.com

fishmeal-based feeds

environmentally and economically unsustainable

Indexmundi data


Major species [edit]

Top 15 cultured fish species by weight in millions of tonnes, according to FAO statistics for 2013 [1]				
Species	Environment	Tonnage (millions)	Value (US\$, billion)	
Grass carp	freshwater	5.23	6.69	
Silver carp	freshwater	4.59	6.13	
Common carp	freshwater	3.76	5.19	
Nile tilapia	freshwater	3.26	5.39	
Bighead carp	freshwater	2.90	3.72	
Catla (Indian carp)	freshwater	2.76	5.49	
Crucian carp	freshwater	2.45	2.67	
Atlantic salmon	marine	2.07	10.10	
Roho labeo	freshwater	1.57	2.54	
Milkfish	freshwater	0.94	1.71	
Rainbow trout	freshwater, brackish, marine	0.88	3.80	
Wuchang bream	freshwater	0.71	1.16	
Black carp	freshwater	0.50	1.15	
Northern snakehead	freshwater	0.48	0.59	
Amur catfish	freshwater	0.41	0.55	

See also: List of commercially important fish species

world Nile tilapia production

Omnivorous but frequently mass-cultured with fishmeal-based feeds

FAO data; from Brown et al. (2014)

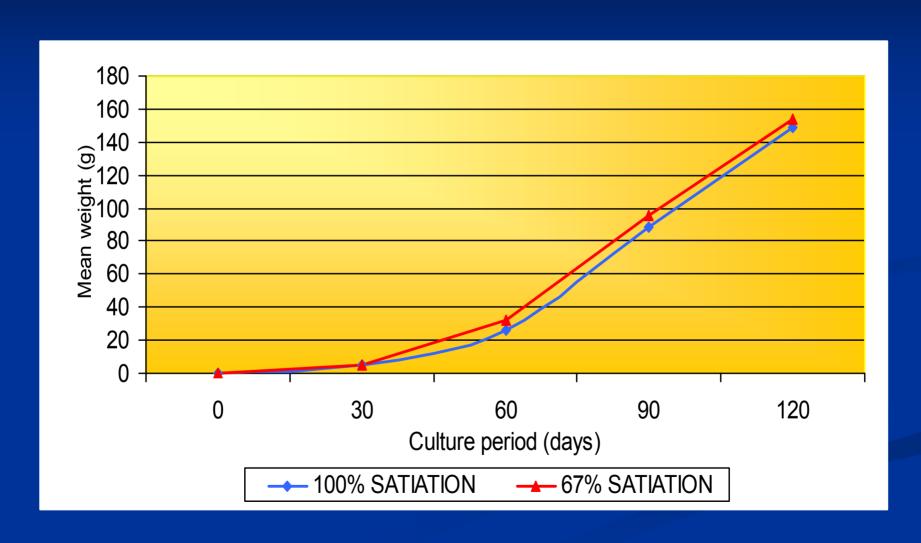
Farm Budget –Tilapia Pond Culture in the Philippines (P/ha/yr)*

Gross Income (P)		643,854	
Less: Cash Cost			
Fingerlings	37,801		
Feeds	262,400		63%
Fertilizers	5,417		
Diesel	42,652		
Hired Labor	19,718		
Non-cash Cost	49,088		
Total Cost		417,076	
Net Income		226,778	
Price/kg (P)	40		
Cost/kg (P)	26		
Profit Margin	35%		

Semi-intensive tilapia culture in the Philippines

- Increased production
- dependence on commercial, often fishmeal-based feeds
 - 60-70% of production cost is due to feed cost

Production methods emphasizing reduced feeding


- I. Delayed feeding onset
- II. Sub-satiation feeding
- III. Combined delayed feeding onset + sub-satiation feeding
- IV. Alternate day feeding strategy

II. Sub-satiation Feeding Strategy

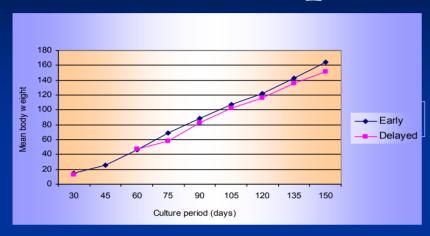
Tilapia were fed at 100% satiation and 67% satiation levels with initial feeding at 45 days

Mean weight of Nile tilapia in ponds at two satiation levels

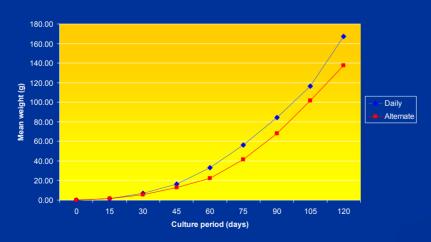
On-farm mean growth performance of Nile tilapia at two satiation levels

Performance	100%	67%
Final Mean Weight (g)	149.0 ± 45	154.0 ± 26
Mean Daily Weight Gain (g day ⁻¹)	1.24 ± 0.38	1.28 ± 0.22
Extrapolated Gross Yield (kg ha ⁻¹)	$3,136 \pm 1,149$	$3,575 \pm 1,257$
FCR	3.41 ± 1.60	2.39 ± 1.10
Survival (%)	57 ± 22	65 ± 20
Quantity of feeds (kg ha ⁻¹)	$9,396 \pm 2086$	$7,554 \pm 1741$

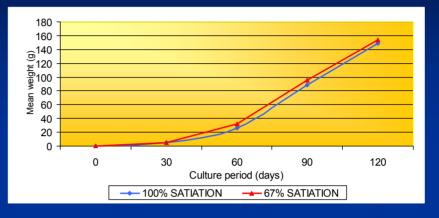
Partial budget analysis


INCOME (SELLING FISH)	100% satiation, 45 day onset	67% satiation, 45 day onset
	P 158,256.50	P 177,969.50
COSTS		
Fingerlings	16,800.00	16,800.00
Feeds	112,752.00	90,651.00
Diesel & oil	2,200.00	2,200.00
Fertilizers	6,314.00	6,282.00
Electricity	1,000.00	1,000.00
Labor	9,750.00	9,750.00
PROFIT	P 9,440.50	P 51,286.50

IV. Alternate Day Feeding Strategy


Alternate day feeding strategy was compared with daily feeding to determine the effects on growth rate, survival, yield, and net profit.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6
7	8	9	10	11	12	13<
14	15<	16	37<	18	19	20
21<	22	23<	24	25<	26	27
28	29	30	31			


Comparative growout

Delayed onset – 5 mo

Alternate days – 4 mo

Sub-Satiation – 4 mo

Delayed onset + SS - 5 mo

On-farm mean growth performance of Nile tilapia fed daily and on alternate day

Performance	Daily A	Alternate day
Final Mean Weight (g)	167.35 ± 53	137.79 ± 72
Mean Daily Weight Gain (g day-1)	1.39 ± 0.44	1.15 ± 0.60
Extrapolated Gross Yield (kg ha ⁻¹)	$2,994 \pm 808$	$2,807 \pm 857$
FCR*	2.2 ± 0.73	1.0 ± 0.34
Survival (%)	55.34 ± 20	63.42 ± 26
Quantity of feeds (kg ha ⁻¹)*	$6,331 \pm 1,088$	$2,689 \pm 601$

Partial budget analysis

INCOME (SELLING FISH)	Daily	Alternate Days
INCOME (SELLING FISH)	P 136,534.00	P 120,920.00
COSTS		
Fingerlings	19,600.00	19,600.00
Feeds	110,722.00	48,197.00
Diesel & oil	2,500.00	2,500.00
Fertilizers	8,454.00	8,454.00
Electricity	1,200.00	1,200.00
Labor	18,000.00	9,000.00
PROFIT	-(P 23,942.00)	P 31,969.00

Conclusions

- Alternate day feeding reduces production costs by approximately 50%.
- The cost savings was not accompanied by any significant reduction in production.
- feed utilization is clean and efficient when tilapia feed on the plankton pool.
- Alternate day, delayed onset and sub-satiation feeding provide yields equal to controls but at a cost savings.

REPLACEMENT OF FISHMEAL WITH SUNFLOWER CAKE

experimental isonitrogenous (26% crude protein) and isocaloric diets for Nile Tilapia (Oreochromis niloticus)

Types of Diets	Diets for Tilapia (26% CP)*					
Ingredients	Diet-1	Diet-2	Diet-3	Diet-4		
	(Control)	(30% SFC)	(40% SFC)	(50% SFC)		
Fish meal (chewa)	16.00	11.00	9.50	8.00		
Mustard Oil Cake	15.00	9.00	7.00	5.00		
Soybean Meal	15.00	8.00	7.00	5.00		
Sunflower cake	0.00	30.00	40.00	50.00		
Rice bran	41.00	20.30	14.80	10.30		
Maize (yellow)	6.30	15.00	15.00	15.00		
Vegetable oil	1.00	1.00	1.00	1.00		
Wheat flour	5.00	5.00	5.00	5.00		
Salt	0.50	0.50	0.50	0.50		
Vitamin & mineral premix	0.20	0.20	0.20	0.20		
Total	100.00	100.00	100.00	100.00		

Growth performance on diets with sunflower cake (p>0.05)

	Diet-1 (Control)	Diet-2 (30% Sunflower cake)	Diet-3 (40% Sunflower cake)	Diet-4 (50% Sunflower cake)
No. of tilapia fry stocked	613	613	613	613
Survival rate (%)	71.27 ± 14.21	78.58 ± 4.52	76.89 ± 7.92	78.53 ± 6.98
Total Initial weight (g)	$7,070.05 \pm 3.12$	$7,070.05 \pm 3.12$	$7,070.05 \pm 3.12$	$7,070.05 \pm 3.12$
Total Final weight (g)	$70,393.69 \pm 9,674$	$76,166.38 \pm 3,548$	$77,657.16 \pm 1,087$	$71,963.50 \pm 7,384$
Total Weight gain (g)	$63,323.64 \pm 9,674$	$69,096.33 \pm 3,550$	$70,587.11 \pm 1,085$	$64,893.45 \pm 7,384$
% Weight gain	895.66 ± 137	977.32 ± 51	998.39 ± 15	917.86 ± 104
FCR	1.68 ± 0.44	1.47 ± 0.04	1.37 ± 0.05	1.49 ± 0.13
PER	2.00 ± 0.47	2.21 ± 0.06	2.25 ± 0.08	2.16 ± 0.19
SGR (% per day)	1.00 ± 0.06	1.03 ± 0.02	1.04 ± 0.01	1.01 ± 0.04

Growth performance on diets with sunflower cake (p>0.05)

	Diet-1 (Control)	Diet-2 (30% Sunflower cake)	Diet-3 (40% Sunflower cake)	Diet-4 (50% Sunflower cake)
No. of tilapia fry stocked	613	613	613	613
Survival rate (%)	71.27 ± 14.21	78.58 ± 4.52	76.89 ± 7.92	78.53 ± 6.98
Total Initial weight (g)	$7,070.05 \pm 3.12$	$7,070.05 \pm 3.12$	$7,070.05 \pm 3.12$	$7,070.05 \pm 3.12$
Total Final weight (g)	$70,393.69 \pm 9,674$	$76,166.38 \pm 3,548$	$77,657.16 \pm 1,087$	$71,963.50 \pm 7,384$
Total Weight gain (g)	$63,323.64 \pm 9,674$	$69,096.33 \pm 3,550$	$70,587.11 \pm 1,085$	$64,893.45 \pm 7,384$
% Weight gain	895.66 ± 137	977.32 ± 51	998.39 ± 15	917.86 ± 104
FCR	1.68 ± 0.44	1.47 ± 0.04	1.37 ± 0.05	1.49 ± 0.13
PER	2.00 ± 0.47	2.21 ± 0.06	2.25 ± 0.08	2.16 ± 0.19
SGR (% per day)	1.00 ± 0.06	1.03 ± 0.02	1.04 ± 0.01	1.01 ± 0.04

Economic efficiency of sunflower cake diets for tilapia, * Feed cost reduction per kg tilapia gain vs control Diet-1

	Diet-1 (Control)	Diet-2 (30% Sunflower cake)	Diet-3 (40% Sunflower cake)	Diet-4 (50% Sunflower cake)
Cost of Feed (BDT/kg)	38.59	33.24	32.00	30.50
FCR	1.68	1.47	1.37	1.49
Cost of feed per kg of tilapia gain	64.83	48.86	43.84	45.45
Cost reduction per kg of tilapia gain (BDT)	0.0	15.97	20.99	19.38
% cost reduction per kg gain	0.0	24.63	32.38	29.89

experimental Diets for freshwater prawn (Macrobrachium rosenbergii)

100.00

Total

Types of Feed (% CP)	Feeds for freshwate	Feeds for freshwater Prawn (30% CP)				
Ingredients	Diet-1	Diet-2	Diet-3	Diet-4		
	(Control)	(30% SFC)	(40% SFC)	(50% SFC)		
Fish meal (chewa)	25.00	17.50	15.00	13.00		
Mustard Oil Cake	16.00	12.00	11.00	10.00		
Soybean meal	16.00	12.00	10.00	8.00		
Sunflower oil cake	0.00	30.00	40.00	50.00		
Rice bran (auto)	31.30	15.80	11.30	6.30		
Maize (yellow)	4.00	5.00	5.00	5.00		
Soybean oil	1.00	1.00	1.00	1.00		
Wheat flour	5.00	5.00	5.00	5.00		
Salt	0.50	0.50	0.50	0.50		
Lime stone	1.00	1.00	1.00	1.00		
Vitamin & min. premix	0.20	0.20	0.20	0.20		

100.00

100.00

100.00

Growth performance of juvenile prawns fed with different level of sunflower cake (p>0.05)

Parameter	Diet-1 (Control)	Diet-2 (30% Sunflower cake)	Diet-3 (40% Sunflower cake)	Diet-4 (50% Sunflower cake)
No. of Juvenile stocked	297	297	297	297
Survival rate (%)	92.42 ± 2.58	94.48 ± 3.79	92.80 ± 4.00	94.18 ± 3.28
Total initial weight (g)	754.70 ± 0.55	755.27 ± 0.77	755.72 ± 0.01	754.83 ± 0.78
Total final weight (g)	10005.78 ±	11168.14 ±	10726.68 ±	11343.26 ±
	885.48	1037.75	776.11	1247.23
% Weight gain	1225.85 ± 118.17	1378.73 ± 137.87	1319.41 ± 102.71	1402.77 ± 165.44
SGR (% per day)	1.12 ± 0.04	1.17 ± 0.04	1.15 ± 0.03	1.18 ± 0.05
FCR	2.79 ± 0.14	2.68 ± 0.20	2.75 ± 0.07	2.56 ± 0.24
PER	1.03 ± 0.05	1.11 ± 0.08	1.06±0.03	1.14±0.10

economic efficiency of sunflower cake diets vs. control for prawn grow-out; BDT (Bangladeshi currency) 78 = \$1 US

Parameters	Diet-1 (Control)	Diet-2 (30% Sunflower cake)	Diet-3 (40% Sunflower cake)	Diet-4 (50% Sunflower cake)
Cost of feed (BDT*/kg)	43.68	38.27	36.34	34.68
FCR	2.79	2.68	2.75	2.56
Cost of feed per kg prawn gain	121.87	102.56	99.94	88.78
Cost reduction per kg prawn gain (BDT)	0.0	19.31	21.93	33.09
% cost reduction per kg gain	0.0	15.84	17.99	27.15

Funding for this research was provided by the

Aquaculture CRSP now called AquaFish CRSP (Collaborative Research Support Program)

The Aquaculture CRSP is funded in part by United States Agency for International Development (USAID) Grant No. LAG-G-00-96-90015-00 and by participating institutions.